Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 325(3): H492-H509, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417870

RESUMO

We present a detailed analysis of regional myocardial blood flow and work to better understand the effects of coronary stenoses and low-dose dobutamine stress. Our analysis is based on a unique open-chest model in anesthetized canines that features invasive hemodynamic monitoring, microsphere-based blood flow analysis, and an extensive three-dimensional (3-D) sonomicrometer array that provides multiaxial deformational assessments in the ischemic, border, and remote vascular territories. We use this model to construct regional pressure-strain loops for each territory and quantify the loop subcomponent areas that reflect myocardial work contributing to the ejection of blood and wasted work that does not. We demonstrate that reductions in coronary blood flow markedly alter the shapes and temporal relationships of pressure-strain loops, as well as the magnitudes of their total and subcomponent areas. Specifically, we show that moderate stenoses in the mid-left anterior descending coronary artery decrease regional midventricle myocardial work indices and substantially increase indices of wasted work. In the midventricle, these effects are most pronounced along the radial and longitudinal axes, with more modest effects along the circumferential axis. We further demonstrate that low-dose dobutamine can help to restore or even improve function, but often at the cost of increased wasted work. This detailed, multiaxial analysis provides unique insight into the physiology and mechanics of the heart in the presence of ischemia and low-dose dobutamine, with potential implications in many areas, including the detection and characterization of ischemic heart disease and the use of inotropic support for low cardiac output.NEW & NOTEWORTHY Our unique experimental model assesses cardiac pressure-strain relationships along multiple axes in multiple regions. We demonstrate that moderate coronary stenoses decrease regional myocardial work and increase wasted work and that low-dose dobutamine can help to restore myocardial function, but often with further increases in wasted work. Our findings highlight the significant directional variation of cardiac mechanics and demonstrate potential advantages of pressure-strain analyses over traditional, purely deformational measures, especially in characterizing physiological changes related to dobutamine.


Assuntos
Estenose Coronária , Isquemia Miocárdica , Animais , Cães , Dobutamina/farmacologia , Miocárdio , Coração , Circulação Coronária , Contração Miocárdica
2.
IEEE Trans Med Imaging ; 40(9): 2233-2245, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872145

RESUMO

Reliable motion estimation and strain analysis using 3D+ time echocardiography (4DE) for localization and characterization of myocardial injury is valuable for early detection and targeted interventions. However, motion estimation is difficult due to the low-SNR that stems from the inherent image properties of 4DE, and intelligent regularization is critical for producing reliable motion estimates. In this work, we incorporated the notion of domain adaptation into a supervised neural network regularization framework. We first propose a semi-supervised Multi-Layered Perceptron (MLP) network with biomechanical constraints for learning a latent representation that is shown to have more physiologically plausible displacements. We extended this framework to include a supervised loss term on synthetic data and showed the effects of biomechanical constraints on the network's ability for domain adaptation. We validated the semi-supervised regularization method on in vivo data with implanted sonomicrometers. Finally, we showed the ability of our semi-supervised learning regularization approach to identify infarct regions using estimated regional strain maps with good agreement to manually traced infarct regions from postmortem excised hearts.


Assuntos
Redes Neurais de Computação , Aprendizado de Máquina Supervisionado , Coração/diagnóstico por imagem , Movimento (Física)
3.
Cardiovasc Ultrasound ; 18(1): 2, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941514

RESUMO

BACKGROUND: Quantitative regional strain analysis by speckle tracking echocardiography (STE) may be particularly useful in the assessment of myocardial ischemia and viability, although reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships. METHODS: Sonomicrometers (16 crystals) were implanted in epicardial and endocardial pairs across the anterior myocardium of anesthetized open chest dogs (n = 7) to form three adjacent cubes representing the ischemic, border, and remote regions, as defined by their relative locations to a hydraulic occluder on the mid-left anterior descending coronary artery (LAD). Additional cardiac (n = 3) and extra-cardiac (n = 3) reference crystals were placed to define the cardiac axes and aid image registration. 2D short axis echocardiograms, sonometric data, and microsphere blood flow data were acquired at baseline and in the presence of mild and moderate LAD stenoses, both before and during low-dose dobutamine stress (5 µg/kg/min). Regional end-systolic 2D STE radial and circumferential strains were calculated with commercial software (EchoInsight) and compared to those determined by sonomicrometry and to microsphere blood flow measurements. Post-systolic indices (PSIs) were also calculated for radial and circumferential strains. RESULTS: Low-dose dobutamine augmented both strain and flow in the presence of mild and moderate stenoses. Regional 2D STE strains correlated moderately with strains assessed by sonomicrometry (Rradial = 0.56, p < 0.0001; Rcirc = 0.55, p < 0.0001) and with regional flow quantities (Rradial = 0.61, Rcirc = 0.63). Overall, correspondence between 2D STE and sonomicrometry was better in the circumferential direction (Bias ± 1.96 SD: - 1.0 ± 8.2% strain, p = 0.06) than the radial direction (5.7 ± 18.3%, p < 0.0001). Mean PSI values were greatest in low flow conditions and normalized with low-dose dobutamine. CONCLUSIONS: 2D STE identifies changes in regional end-systolic circumferential and radial strain produced by mild and moderate coronary stenoses and low-dose dobutamine stress. Regional 2D STE end-systolic strain measurements correlate modestly with regional sonomicrometer strain and microsphere flow measurements.


Assuntos
Circulação Coronária/fisiologia , Estenose Coronária/diagnóstico , Vasos Coronários/fisiopatologia , Ecocardiografia sob Estresse/métodos , Contração Miocárdica/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Animais , Estenose Coronária/fisiopatologia , Vasos Coronários/diagnóstico por imagem , Modelos Animais de Doenças , Cães , Sístole
4.
Med Image Anal ; 55: 116-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31055125

RESUMO

The accurate quantification of left ventricular (LV) deformation/strain shows significant promise for quantitatively assessing cardiac function for use in diagnosis and therapy planning. However, accurate estimation of the displacement of myocardial tissue and hence LV strain has been challenging due to a variety of issues, including those related to deriving tracking tokens from images and following tissue locations over the entire cardiac cycle. In this work, we propose a point matching scheme where correspondences are modeled as flow through a graphical network. Myocardial surface points are set up as nodes in the network and edges define neighborhood relationships temporally. The novelty lies in the constraints that are imposed on the matching scheme, which render the correspondences one-to-one through the entire cardiac cycle, and not just two consecutive frames. The constraints also encourage motion to be cyclic, which an important characteristic of LV motion. We validate our method by applying it to the estimation of quantitative LV displacement and strain estimation using 8 synthetic and 8 open-chested canine 4D echocardiographic image sequences, the latter with sonomicrometric crystals implanted on the LV wall. We were able to achieve excellent tracking accuracy on the synthetic dataset and observed a good correlation with crystal-based strains on the in-vivo data.


Assuntos
Algoritmos , Ecocardiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Disfunção Ventricular Esquerda/diagnóstico por imagem , Animais , Cães , Movimento (Física)
5.
IEEE Access ; 6: 17415-17428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30740286

RESUMO

Speckle tracking based on block matching is the most common method for multi-dimensional motion estimation in ultrasound elasticity imaging. Extension of two-dimensional (2-D) methods to three dimensions (3-D) has been problematic because of the large computational load of 3-D tracking, as well as performance issues related to the low frame (volume) rates of 3-D images. To address both of these problems, we have developed an efficient two-pass tracking method suited to cardiac elasticity imaging. PatchMatch, originally developed for image editing, has been adapted for ultrasound to provide first-pass displacement estimates. Second-pass estimation uses conventional block matching within a much smaller search region. 3-D displacements are then obtained using correlation filtering previously shown to be effective against speckle decorrelation. Both simulated and in vivo canine cardiac results demonstrate that the proposed two-pass method reduces computational cost compared to conventional 3-D exhaustive search by a factor of 10. Moreover, it outperforms one-pass tracking by a factor of about 3 in terms of root-mean-square error relative to available ground-truth displacements.

6.
Funct Imaging Model Heart ; 9126: 57-64, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27976753

RESUMO

Cardiac motion analysis, particularly of the left ventricle (LV), can provide valuable information regarding the functional state of the heart. We propose a strategy of combining shape tracking and speckle tracking based displacements to calculate the dense deformation field of the myocardium. We introduce the use and effects of l1 regularization, which induces sparsity, in our integration method. We also introduce regularization to make the dense fields more adhering to cardiac biomechanics. Finally, we motivate the necessity of temporal coherence in the dense fields and demonstrate a way of doing so. We test our method on ultrasound (US) images acquired from six open-chested canine hearts. Baseline and post-occlusion strain results are presented for an animal, where we were able to detect significant change in the ischemic region. Six sets of strain results were also compared to strains obtained from tagged magnetic resonance (MR) data. Median correlation (with MR-tagging) coefficients of 0.73 and 0.82 were obtained for radial and circumferential strains respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...